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Abstract

Data for discrete ordered dependent variables are often characterised by ‘‘excessive’’ zero

observations which may relate to two distinct data generating processes. Traditional ordered probit

models have limited capacity in explaining this preponderance of zero observations. We propose a

zero-inflated ordered probit model using a double-hurdle combination of a split probit model and an

ordered probit model. Monte Carlo results show favourable performance in finite samples. The

model is applied to a consumer choice problem of tobacco consumption indicating that policy

recommendations could be misleading if the splitting process is ignored.

r 2007 Elsevier B.V. All rights reserved.
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1. Introduction and Background

Often in empirical economics interest lies in modelling a discrete random variable that is
inherently ordered. Examples include survey responses on opinions, employment status
levels, bond ratings and job classifications by skill levels. Typically, the empirical strategy
employed would involve estimation of an ordered probit (OP) or logit model (see, for
example, McKelvey and Zavoina, 1975; Marcus and Greene, 1985). However, often data
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for such ordered random variables are characterised by excessive observations in the
choice at one end of the ordering or, typically, zeros. For example, in a survey
corresponding to illicit drug use, answers to a question such as ‘‘how often do you use drug

X?’’ are likely to be characterised by an excess of zero observations when discrete choices
of consumption levels including ‘‘never/not recently’’ ðy ¼ 0Þ are presented.
Traditional OP models have limited capacity in explaining such a preponderance of zero

observations, especially when the zeros may relate to two distinct sources. In the case of
discrete levels of reported drug consumption, zeros will be recorded for non-participants
who, for example, abstain due to health or legal concerns and who pay no regard to drug
in their decision making. However, there may also be zeros who are the corner solution of
a standard consumer demand problem and who may become consumers if the price is
lower or income is higher. Thus, it is likely that these two types of zeros are driven by
different systems of consumer behaviour. Here, zero consumption potential users are likely
to possess characteristics similar to those of the users and are likely to be responsive to
standard consumer demand factors such as prices and income. On the other hand, genuine
non-participants are likely to have perfectly inelastic price and income demand
schedules, and are driven by a separate process relating to sociological, health and
ethical considerations. If such underlying processes are modelled incorrectly, it could
invalidate any subsequent policy implications. Additionally, even the same explanatory
variable could have different effects on the two decisions. One example is the
effect of income on drug consumption. Higher income, acting as an indicator for social
class and health awareness, may increase the chance of genuine non-participation.
However, for participants, higher income will be associated with lower chances of zero
consumption, if tobacco is a normal good, for these participants. An OP model generated
by a single latent equation cannot allow for the differentiation between the two opposing
effects.
In a manner analogous to the zero-inflated/augmented Poisson (ZIP/ZAP) models

in the count data literature (see, for example, Mullahey, 1986; Heilbron, 1989; Lambert,
1992; Greene, 1994; Pohlmeier and Ulrich, 1995; Mullahey, 1997) and double-
hurdle models in the limited dependent variable literature (see, for example, Cragg,
1971), this paper proposes an extension to the OP model to take into account of the
possibility that the zeros can arise from two different aspects of individual behaviour.
Unlike the Poisson and negative binomial regression framework, the ultimate data
generating process here can be seen as coming from two separate underlying latent
variables. We propose a zero-inflated ordered probit (ZIOP) model that involves a system
of a probit ‘‘splitting’’ model and an OP model which relate to potentially differing sets of
covariates. We also further allow the error terms of the two latent equations to be
correlated (denoted a ZIOPC model), along the lines of a Heckman-selection-type model
(Heckman, 1979).
Monte Carlo experiments are conducted under various true models to examine the finite

sample performance. We also report performances of various specification tests and model
selection criteria for choosing between the OP, ZIOP and ZIOPC models. The model is
then applied to a unit record dataset from Australia on tobacco consumption, which
involves an estimation sample of nearly 29,000 individuals and 76% of zero observations.
The application clearly illustrates the extra insights provided by the ZIOP/ZIOPC model in
analysing the effects of some important explanatory factors on individuals’ tobacco
consumption patterns.
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2. The econometric framework

2.1. A zero-inflated ordered probit (ZIOP) model

We start by defining a discrete random variable y that is observable and assumes the
discrete ordered values of 0; 1; . . . ; J. A standard OP approach would map a single latent
variable to the observed outcome y via so-called boundary parameters, with the latent
variable being related to a set of covariates. Here we propose a ZIOP model that involves
two latent equations: a probit selection equation and an OP equation. This splits the
observations into two regimes that relate to potentially two different sets of explanatory
variables. Consider the drug consumption example. Here an individual user is modelled as
having to overcome two hurdles: whether to participate, and then, conditional on
participation, how much to consume which also includes zero consumption. The two types
of zero-consumption observations relate to those non-participants with perfectly inelastic
demand to prices and income, and those zero consumption participants who report zero
consumption at the time but who may consume once the price is right, for example. The
former may relate to personal demographics and socioeconomic status, whilst the latter
group may exhibit behaviour similar to other non-zero users and be more responsive to
economic factors such as prices and income.

Let r denote a binary variable indicating the split between Regime 0 (with r ¼ 0 for non-
participants) and Regime 1 (with r ¼ 1 for participants). r is related to a latent variable r�

via the mapping: r ¼ 1 for r�40 and r ¼ 0 for r�p0. The latent variable r� represents the
propensity for participation and is given by

r� ¼ x0bþ �, (1)

where x is a vector of covariates that determine the choice between the two regimes, b a
vector of unknown coefficients, and � a standard-normally distributed error term.
Accordingly, the probability of an individual being in Regime 1 is given by (Maddala,
1983)

Prðr ¼ 1jxÞ ¼ Prðr�40jxÞ ¼ Fðx0bÞ, (2)

where Fð:Þ is the cumulative distribution function (c.d.f.) of the univariate standard normal
distribution.

Conditional on r ¼ 1, consumption levels under Regime 1 are represented by a discrete
variable ey ðey ¼ 0; 1; . . . ; JÞ that is generated by an OP model via a second underlying latent
variable ey�:ey� ¼ z0cþ u, (3)

with z being a vector of explanatory variables with unknown weights c, and u an error term
following a standard normal distribution. The mapping between ey� and ey is given by

ey ¼ 0 if ey�p0;

j if mj�1oey�pmj ðj ¼ 1; . . . ; J � 1Þ;

J if mJ�1pey�;
8><>: (4)

where mjðj ¼ 1; . . . ; J � 1Þ are boundary parameters to be estimated in addition to c, and
we assume throughout the paper that m0 ¼ 0. Note that, importantly, Regime 1 also allows
for zero consumption. Also, there is no requirement that x ¼ z. Under the assumption that
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u is standard Gaussian, the OP probabilities are given by (Maddala, 1983)

PrðeyÞ ¼ Prðey ¼ 0jz; r ¼ 1Þ ¼ Fð�z0cÞ;

Prðey ¼ jjz; r ¼ 1Þ ¼ Fðmj � z0cÞ � Fðmj�1 � z0cÞ ðj ¼ 1; . . . ; J � 1Þ;

Prðey ¼ Jjz; r ¼ 1Þ ¼ 1� FðmJ�1 � z0cÞ:

8><>: (5)

While r and ey are not individually observable in terms of the zeros, they are observed via
the criterion

y ¼ rey. (6)

That is, to observe a y ¼ 0 outcome we require either that r ¼ 0 (the individual is a non-
participant) or jointly that r ¼ 1 and ey ¼ 0 (the individual is a zero consumption
participant). To observe a positive y, we require jointly that the individual is a participant
ðr ¼ 1Þ and that ey�40. Under the assumption that � and u identically and independently
follow standard Gaussian distributions, the full probabilities for y are given by

PrðyÞ ¼
Prðy ¼ 0jz; xÞ ¼ Prðr ¼ 0jxÞ þ Prðr ¼ 1jxÞPrðey ¼ 0jz; r ¼ 1Þ

Prðy ¼ jjz; xÞ ¼ Prðr ¼ 1jxÞPrðey ¼ jjz; r ¼ 1Þ ðj ¼ 1; . . . ; JÞ

(

¼

Prðy ¼ 0jz; xÞ ¼ ½1� Fðx0bÞ� þ Fðx0bÞFð�z0cÞ

Prðy ¼ jjz;xÞ ¼ Fðx0bÞ½Fðmj � z0cÞ � Fðmj�1 � z0cÞ� ðj ¼ 1; . . . ; J � 1Þ

Prðy ¼ Jjz;xÞ ¼ Fðx0bÞ½1� FðmJ�1 � z0cÞ�:

8>><>>: ð7Þ

In this way, the probability of a zero observation has been ‘‘inflated’’ as it is a
combination of the probability of ‘‘zero consumption’’ from the OP process plus the
probability of ‘‘non-participation’’ from the split probit model. Note that this specification
is analogous to the zero-inflated/augmented count models, and that there may or may not
be overlaps with the variables in x and z. Moreover, the model is also directly comparable
to the double-hurdle limited dependent variable models (see, for example, Cragg, 1971).
Once the full set of probabilities has been specified and given an i:i:d: sample of size N

from the population on ðyi; xi; ziÞ, i ¼ 1; . . . ;N, the parameters of the full model h ¼

ðb0; c0; l0Þ0 can be consistently and efficiently estimated using maximum likelihood (ML)
criteria, yielding asymptotically normally distributed maximum likelihood estimates
(MLEs).1 The log-likelihood function is

‘ðhÞ ¼
XN

i¼1

XJ

j¼0

hij ln½Prðyi ¼ jjxi; zi; hÞ�, (8)

where the indicator function hij is

hij ¼
1 if individual i chooses outcome j

0 otherwise:

�
ði ¼ 1; . . . ;N; j ¼ 0; 1; . . . ; JÞ (9)
1An anonymous referee pointed out that an interesting line of future research would be to estimate such a model

by Bayesian Monte Carlo Markov Chain techniques.
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2.2. Generalising the model to correlated disturbances (ZIOPC)

As described above, the observed realisation of the random variable y can be viewed as
the result of two separate latent equations, Eqs. (1) and (3), with uncorrelated error terms.
However, these correspond to the same individual so it is likely that the two stochastic
terms � and u will be related. We now extend the model to have ð�; uÞ follow a bivariate
normal distribution with correlation coefficient r, whilst maintaining the identifying
assumption of unit variances. The full observability criteria are thus

y ¼ rey ¼ 0 if ðr�p0Þ or ðr�40 and ey�p0Þ;

j if ðr�40 and mj�1oey�pmjÞ ðj ¼ 1; . . . ; J � 1Þ;

J if ðr�40 and mJ�1oey�Þ;
8><>: (10)

which translate into the following expressions for the probabilities:

PrðyÞ ¼

Prðy ¼ 0jz; xÞ ¼ ½1� Fðx0bÞ� þ F2ðx
0b;�z0c;�rÞ;

Prðy ¼ jjz; xÞ ¼ F2ðx
0b;mj � z0c;�rÞ � F2ðx

0b;mj�1 � z0c;�rÞ

ðj ¼ 1; . . . ; J � 1Þ;

Prðy ¼ Jjz;xÞ ¼ F2ðx
0b; z0c� mJ�1; rÞ;

8>>>><>>>>: (11)

where F2ða; b; lÞ denotes the c.d.f. of the standardised bivariate normal distribution with
correlation coefficient l between the two univariate random elements.

ML estimation would again involve maxmisation of Eq. (8) replacing the probabilities of
(7) with those of (11) and re-defining h as h ¼ ðb0; c0;l0;rÞ0. A Wald test of r ¼ 0 is a test for
independence of the two error terms and thus a test of the more general model given by
Eq. (11) against the null of a simpler nested model of Eq. (7).2
2.3. Marginal effects

There are several sets of marginal effects that may be of interest in this model. For
example, one may be interested in the marginal effects of an explanatory variable on the
probability of ‘‘participation’’, Prðr ¼ 1Þ, or the probabilities for the levels of consumption
conditional on participation, Prðey ¼ jjr ¼ 1Þ, or on the overall probabilities for different
levels of consumption, Prðy ¼ jÞ. In particular, the marginal effect on the overall
probability of observing zero consumption, Prðy ¼ 0Þ, is the sum of the effects on the
probabilities of the two types of zeros; that is, the probability of non-participation and the
probability of zero-consumption arising from participants who are infrequent or potential
consumers.

The marginal effect of a dummy variable can be calculated as the difference in the
probability of interest with the relevant dummy variable turned ‘‘on’’ and ‘‘off’’,
conditional on given values of all other covariates. Note that the explanatory variable of
interest may appear in only one of x or z, or in both. For a continuous variable xk, the
marginal effect on the participation probability in Eq. (2), which only relates to
2An OP model in Eqs. (3) and (4) with ey � y could be used as starting values for c and l. Those for b can be

obtained from estimating a binary probit model defined by (1) and (2) with Prðr ¼ 1jxÞ � Prðy40jxÞ. With fixedbhZIOP, a grid-search over ð�0:9; 0:9Þ would provide a start value for r.
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explanatory variables in x, is given by

ME
Prðr¼1Þ

¼
qPrðr ¼ 1Þ

qxk

¼ fðx0bÞbk. (12)

To derive the marginal effects on the overall probabilities for the general model of
ZIOPC, we partition the explanatory variables and the associated coefficients as

x ¼
wex

� �
; b ¼

bweb
 !

; z ¼
wez

� �
and c ¼

cwec
 !

, (13)

where w represents the common variables that appear in both x and z, with the associated
coefficients bw and cw for the participation and consumption equations, respectively. ex andez denote those distinct variables that only appear in one of the latent equations, with eb andec as their associated coefficients for the two equations.
Denote the unique explanatory variables for the whole model as x� ¼ ðw0;ex0;ez0Þ0, and set

the associated coefficient vectors for x� as b� ¼ ðb0w;
eb0; 00Þ0 and c� ¼ ðc0w; 0

0;ec0Þ0. The
marginal effects of the explanatory variable vector x� on the full probabilities in Eq. (11)
are given by

ME
Prðy¼0Þ

¼ F
�z0cþ rx0bffiffiffiffiffiffiffiffiffiffiffiffiffi

1� r2
p !

� 1

" #
fðx0bÞb� � F

x0b� rz0cffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p !
fðz0cÞc�,

ME
Prðy¼0Þ

¼ F
�z0cþ rx0bffiffiffiffiffiffiffiffiffiffiffiffiffi

1� r2
p !

� 1

" #
fðx0bÞb� � F

x0b� rz0cffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p !
fðz0cÞc�

þ fðz0cÞF
x0b� rz0cffiffiffiffiffiffiffiffiffiffiffiffiffi

1� r2
p !

� fðm1 � z0cÞF
x0bþ rðm1 � z0cÞffiffiffiffiffiffiffiffiffiffiffiffiffi

1� r2
p !" #

c�,

ME
Prðy¼2Þ

¼ F
m2 � z0cþ rx0bffiffiffiffiffiffiffiffiffiffiffiffiffi

1� r2
p !

� F
m1 � z0cþ rx0bffiffiffiffiffiffiffiffiffiffiffiffiffi

1� r2
p !" #

fðx0bÞb�

þ fðm1 � z0cÞF
x0bþ rðm1 � z0cÞffiffiffiffiffiffiffiffiffiffiffiffiffi

1� r2
p !

� fðm2 � z0cÞF
x0bþ rðm2 � z0cÞffiffiffiffiffiffiffiffiffiffiffiffiffi

1� r2
p !" #

c�,

..

.

ME
Prðy¼JÞ

¼ F
z0c� mJ�1 � rx0bffiffiffiffiffiffiffiffiffiffiffiffiffi

1� r2
p !

fðx0bÞb� þ fðz0c� mJ�1Þ

�F
x0b� rðz0c� mJ�1Þffiffiffiffiffiffiffiffiffiffiffiffiffi

1� r2
p !

c�, ð14Þ

where fð:Þ is the p:d:f : of the standard univariate normal distribution. Note that the
marginal effect on Prðy ¼ 0Þ can be decomposed into the marginal effects on the
probabilities of the two types of zeros. Marginal effects for the ZIOP model are obtained
as above but with r ¼ 0. Standard errors of the marginal effects can be obtained by the
Delta method (see, for example, Greene, 2003, pp. 674–675). An alternative method is to
use simulated asymptotic sampling techniques. Specifically, randomly draw h from
MVNðbh;Var½bh�Þ a large number of times. For each random draw, calculate the marginal
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effects using either the analytical expressions of Eq. (14) or the numerical derivatives of the
probability expressions. The empirical standard deviations of the simulated marginal
effects are valid asymptotic estimates of their standard errors.3
2.4. Hypothesis testing and model selection issues

Testing between the ZIOP and ZIOPC models can be based on a simple t-test of r ¼ 0,
using the standard errors from the estimated Hessian. With regard to the ZIOP (or
ZIOPC) versus the OP model, they are not nested in the usual sense of parameter
restrictions. The ZIOP (or ZIOPC) model becomes an OP model when Prðr ¼ 1jxÞ � 1, or
x0b!1 in Eq. (2), implying all individuals are in Regime 1 and there is no ‘‘zero-
splitting’’ process. Although having two non-nested models in this case, a generalised
likelihood ratio (LR) statistic could be used, with degrees of freedom being given by the
number of additional parameters estimated in the more general model. The LR test is
known to have good properties in non-standard testing problems (see, for example,
Andrews and Ploberger, 1995; Chesher and Smith, 1997). Similarly lacking theoretical
underpinnings in this situation but a useful general specification test in many situations,
the Hausman specification test (Hausman, 1978) could also be considered, with the degrees
of freedom being the number of common parameters estimated in the competing models.
As indicated in the Monte Carlo results in Section 3, both tests actually perform quite well.

A more theoretically based approach is the Vuong test (Vuong, 1989) for testing between
two non-nested models, which has been suggested in the related context of testing a zero-
inflated Poisson versus a simple count model (Greene, 2003). Denote f hðyijxi; ziÞ as the
predicted probability using Model h (h ¼ 1 and 2 for OP and ZIOP/ZIOPC) that yi equals
the random variable y equals the observed yi and let

mi ¼ log
f 1ðyijxi; ziÞ

f 2ðyijxi; ziÞ

� �
. (15)

To test the null hypothesis that EðmiÞ ¼ 0; or that there is no difference in the
probabilities of correct prediction using the two models, the Vuong statistic is given by

u ¼

ffiffiffiffiffi
N
p
ð1=N

PN
i¼1miÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1=N
PN

i¼1ðmi � m̄Þ2
q , (16)

which has a standard normal limiting distribution. The test statistic is bidirectional in the
sense that jujo1:96 lends support to neither model, whereas uo� 1:96 favours Model 2
and u41:96 favours Model 1 (Vuong, 1989).

Finally, in such a non-nested situation, information based model-selection criteria, such
as AIC, BIC and consistent AIC ðCAICÞ, are appropriate for choosing between alternative
models. These are given by AIC ¼ �2‘ðhÞ þ k, BIC ¼ �2‘ðhÞ þ ðlnNÞk, and CAIC ¼

�2‘ðhÞ þ ð1þ lnNÞk (see, for example, Cameron and Trivedi, 1998, p. 183), where k is the
total number of parameters estimated and ‘ðhÞ the maximised log-likelihood function. The
preferred model is that with the smallest value.
3The Delta and the simulation methods represent two distinct asymptotic approximations. Nearly identical

results were obtained from the two approaches, indicating the adequacy of the underlying asymptotic theory in

this case.
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3. Finite sample performance

Although the model satisfies the regularity conditions for ML estimation (see Greene,
2003), results of some Monte Carlo experiments are presented in this section to provide
some evidence on the finite sample performance of the ML estimator and the model
selection criteria. We consider, in turn, the cases when the data generating process (d.g.p.)
is ZIOPC, ZIOP and OP. Estimation was undertaken in the Gauss matrix programming
language, using the CML maximum likelihood estimation add-in module.4
3.1. Performance under ZIOPC/ZIOP

3.1.1. Monte Carlo design

R ¼ 1; 000 repeated samples, each with a sample size of N ¼ 1; 000, are generated from a
ZIOPC d.g.p., and all three models of ZIOPC, ZIOP and OP are estimated (Experiment 1).
This is then repeated for a d.g.p. of ZIOP with r ¼ 0 (Experiment 2). We draw x from
x ¼ ð1;x1;x2Þ

0, where x1 ¼ logðUniform½0; 100�Þ and x2 ¼ 1fUniform½0;1�40:25g. Observations
for z are generated from z ¼ ð1; z1Þ

0, where z1 � x1. We have chosen the continuous
variable z1 � x1 to mimic variables such as age and income, and the dummy variable, x2 to
represent qualitative characteristics such as gender or marital status. The set of N ¼ 1; 000
draws of x and z is generated once and subsequently held fixed.
Parameter values for both experiments are set as follows: ðb0;b1;b2Þ

0
¼ ð1;�0:25;�1Þ0,

ðg0; g1Þ
0
¼ ð0:5; 1Þ0, ðm1; m2Þ

0
¼ ð4:5; 5:5Þ0, and for Experiment 1, r ¼ 0:5. Note that we have

set the coefficients b1 and g1 as having opposite signs allowing for the same explanatory
variable ðx1 � z1Þ to have opposing effects on the two latent variables. The parameter
values are also chosen to yield around 70% of zero observations.
3.1.2. Monte Carlo results

The results are summarised in Tables 1 and 2. As individual coefficients in such discrete
models do not convey much information, we present the results in terms of estimated
marginal effects evaluated at sample means of the observed covariates. For each of the
j ¼ 0; . . . ; J outcomes, we present the true marginal effects, the estimated marginal effects
averaged over the R runs (ME), the root mean square error of the R estimated marginal
effects relative to the true MEs (RMSE), as well as the empirical coverage probabilities
(CP), measured as the percentages of times the true marginal effects fall within the
estimated 95% confidence intervals. We also present the same set of information for the
estimated parameters l and r, though we do not present results for b and c.5

Some model selection and summary statistics are also presented. RMSE_P refers to the
root mean square error of the predicted probabilities for all outcomes and observations,
averaged over the R Monte Carlo runs, where for the mth replication

RMSEm ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1=NJÞ

PN
i¼1

PJ
j¼0ð

bPm

ij � Pm
ij Þ

2
q

, ðm ¼ 1; . . . ;RÞ. Correct gives the average

percentage of correct predictions for y based on the maximum probability rule, whilst
Time refers to the average estimation time (in minutes). The results for the Wald test of the
4Code is available from the authors on request. Also the model will be available in the next release of Limdep

(version 9.0), NLOGIT (4.0).
5Results for b and c can be found in Harris and Zhao (2004).
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Table 1

Monte Carlo results under ZIOPC: Experiment 1

Prðy ¼ 0jx; zÞ Prðy ¼ 1jx; zÞ

TRUE OP ZIOP ZIOPC TRUE OP ZIOP ZIOPC

Marginal effects (ME)

x1 ¼ z1 ME 0.080 0.013 0.083 0.082 �0.149 �0.004 �0.147 �0.150

RMSE (0.068) (0.018) (0.018) (0.145) (0.015) (0.016)

CP 0.003 0.955 0.955 0.000 1.000 1.000

x2 ME 0.320 0.321 0.322 �0.165 �0.134 �0.165

RMSE (0.031) (0.031) (0.035) (0.022)

CP 0.957 0.956 1.000 1.000

Prðy ¼ 2jx; zÞ Prðy ¼ 3jx; zÞ

TRUE OP ZIOP ZIOPC TRUE OP ZIOP ZIOPC

x1 ¼ z1 ME �0.001 �0.004 0.002 �0.002 0.071 �0.005 0.063 0.070

RMSE (0.007) (0.011) (0.012) (0.076) (0.012) (0.010)

CP 0.997 1.000 1.000 0.000 1.000 1.000

x2 ME �0.118 �0.126 �0.119 �0.037 �0.062 �0.038

RMSE (0.019) (0.019) (0.027) (0.013)

CP 0.998 1.000 1.000 1.000

TRUE OP ZIOP ZIOPC

Coefficients

m1 m1 4.500 0.446 4.787 4.461

RMSE (4.050) (0.860) (0.830)

CP 0.000 0.976 0.947

m2 m2 5.500 0.893 5.872 5.460

RMSE (4.610) (0.910) (0.860)

CP 0.000 0.976 0.947

r r 0.500 0.482

RMSE (0.170)

CP 0.927

OP ZIOP ZIOPC

RMSE_P 0.116 0.023 0.020

(0.001) (0.005) (0.006)

Correct 0.731 0.744 0.744

Time 0.025 0.075 0.493

Wald 0.235 0.765

Vuong 0.00 1.00

VuongðCÞ 0.00 1.00

LR 1.00

LRðCÞ 1.00

Hausman 1.00

HausmanðCÞ 0.99

AIC 0.000 0.074 0.926

BIC 0.000 0.540 0.460

CAIC 0.000 0.589 0.411

M.N. Harris, X. Zhao / Journal of Econometrics 141 (2007) 1073–1099 1081
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Table 2

Monte Carlo results under ZIOP: Experiment 2

Prðy ¼ 0jz;xÞ Prðy ¼ 1jz; xÞ

TRUE OP ZIOP ZIOPC TRUE OP ZIOP ZIOPC

Marginal effects

x1 ¼ z1 ME 0.080 0.018 0.083 0.083 �0.146 �0.009 �0.146 �0.147

RMSE (0.063) (0.019) (0.019) (0.137) (0.017) (0.017)

CP 0.003 0.953 0.955 0.000 0.979 0.982

x2 ME 0.320 0.320 0.320 �0.206 �0.206 �0.206

RMSE (0.033) (0.032) (0.024) (0.027)

CP 0.951 0.952 1.000 1.000

Prðy ¼ 2jz;xÞ Prðy ¼ 3jz; xÞ

TRUE OP ZIOP ZIOPC TRUE OP ZIOP ZIOPC

x1 ¼ z1 ME 0.033 �0.005 0.032 0.032 0.033 �0.004 0.032 0.032

RMSE (0.038) (0.010) (0.010) (0.037) (0.006) (0.006)

CP 0.000 0.996 0.997 0.000 1.000 1.000

x2 ME �0.087 �0.087 �0.087 �0.028 �0.028 �0.027

RMSE (0.013) (0.015) (0.007) (0.008)

CP 1.000 1.000 1.000 1.000

TRUE OP ZIOP ZIOPC

Coefficients

m1 m1 4.500 0.667 4.449 4.393

RMSE (3.830) (0.780) (0.780)

CP 0.000 0.943 0.939

m2 m2 5.500 1.206 5.454 5.383

RMSE (4.290) (0.790) (0.800)

CP 0.000 0.943 0.939

r r 0.000 0.005

RMSE (0.220)

CP 0.927

OP ZIOP ZIOPC

RMSE_P 0.110 0.019 0.019

(0.002) (0.006) (0.006)

Correct 0.733 0.748 0.748

Time 0.0262 0.0811 0.3184

Wald 0.927 0.073

Vuong 0.00 1.00

VuongðCÞ 0.00 1.00

LR 1.00

LRðCÞ 1.00

Hausman 1.00

HausmanðCÞ 1.00

AIC 0.000 0.670 0.330

BIC 0.000 0.988 0.012

CAIC 0.000 0.991 0.009

M.N. Harris, X. Zhao / Journal of Econometrics 141 (2007) 1073–10991082
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null of ZIOP ðH0:r ¼ 0Þ against the alternative of ZIOPC are given as the percentage of
times that the statistic lends support to each model. LR/LRðCÞ and Hausman/HausmanðCÞ

are, respectively, the percentage of times the LR and Hausman statistics favour the ZIOP
(ZIOPC) over the OP model. Vuong/Vuong(C) corresponds to Vuong’s (1989) non-nested
test as applied to the ZIOP/ZIOPC model versus OP, again expressed as the percentage of
times each model is selected. Finally, the percentage of times each of the AIC; BIC and
CAIC selects each of the three models is also reported. All tests are undertaken at 5%
nominal size.

As can be seen from Table 1, when the true model is ZIOPC (Experiment 1) and a simple
OP model is estimated, not surprisingly, both the estimated marginal effects and the
estimated boundary parameters are severely biased. With the exception of one outcome,
95% empirical CP are essentially zero. On the other hand, estimation of a ZIOP model
ignoring the correlation performs quite well. Average estimated marginal effects are very
close to the true ones, and moreover have small RMSEs. Allowing for the (true)
correlation in estimation (ZIOPC) further improves the results. RMSE measures for
ZIOPC are even better with essentially zero biases and coverage probabilities ranging from
0.927 to 1.6 The average estimate of r is 0.48 compared to the actual value of 0.5, with an
empirical CP of 93%.

In terms of correctly estimating probabilities, the OP clearly fares poorly with an
average RMSE of 0.116. Significant improvements are afforded by the ZIOP and ZIOPC
models; here the mean RMSE falls sharply to 0.023 and 0.020, respectively. The percentage
of correct predictions is fairly similar across all models. This is the result of a common
phenomenon typical in discrete choice models, where models tend to simply predominantly
predict the most frequently observed outcome (here zeros), resulting in poor ‘‘predictive’’
performance.

For applied researchers, an important issue is a model selection procedure to correctly
choose between alternative models. As shown in Table 1, the Wald test of ZIOPC versus

ZIOP correctly rejects the null and selects the correct ZIOPC model in 77% of cases. For
choosing between the non-nested models, Vuong’s (1989) statistic correctly selects the
ZIOPC model over the incorrect OP in all cases. The uncorrelated ZIOP model is also
preferred to the OP model by the Vuong test in all instances. The LR statistics also
correctly reject the OP model all of the time. The Hausman statistics fare similarly well,
only incorrectly rejecting in 1% of instances (for the correlated version). In terms of the
information criteria, in no instances do any of the criteria incorrectly select the OP model.
AIC significantly favours the ZIOPC model, whereas BIC and CIAC have an approximate
equal split in choosing between the ZIOP and ZIOPC models. However, as already stated,
a preferable method of choosing between these two nested models would be a Wald test of
r ¼ 0. Finally, with regard to estimation times, the ZIOPC (with an average of 0.493min
per estimation) appears to be more computationally intensive than the simpler OP
(0.025min) and its uncorrelated counterpart ZIOP (0.075min).

Turning to Experiment 2 in Table 2 where the d.g.p. is ZIOP (with r ¼ 0), here we would
expect the OP to fare poorly and the ZIOP and ZIOPC to excel, with the estimates of r in
the latter to be ‘‘small’’ and insignificant. Indeed, the OP estimated marginal effects and
boundary parameters are again quite severely biased, with CP of 0.003 or lower, whereas
6Note that all of these CP are based on asymptotic distributions whilst N here is ‘‘small’’ at 1,000. Empirical CP

would therefore be much closer to the theoretical 0.95 values for larger sample sizes.
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both of the ZIOP and ZIOPC ones are essentially identical with small biases and empirical
CP ranging from 0.939 to 1. The average estimate of r is 0.005 and at 5% nominal size one
would incorrectly reject the null of r ¼ 0 in 7.3% of cases. The ZIOP and ZIOPC models
clearly dominate the misspecified simple OP model in terms of RMSE_P. Once more, in all
instances the Vuong statistic correctly chooses against the simple OP model, as do the LR

and Hausman statistics. With regard to model selection criteria, the OP is never chosen by
any of the criteria, and here the information criteria perform much better with regard to
choosing the correct model.

3.1.3. Exclusion restrictions

It is often the case in such two-part models that precision of parameter estimates is
enhanced if there are explicit exclusion restrictions in the specification of the covariates in
the two equations. For example, in the well-known Heckman-selection equation
(Heckman, 1979), although the correlation between the selection and regression equations
is identified by the nonlinearities involved, due to multicollinearity concerns, this
correlation is often imprecisely estimated if x � z. Smith (2003) also suggests that
identification of the correlation parameter may be stronger in samples with more than 50%
zeros. To examine the likely effect of exclusion restrictions, Experiment 1 with a d:g:p: of
ZIOPC is re-run assuming x � z. The results are presented in Table 3.
Here all results for the marginal effects are somewhat similar to Experiment 1 where

exclusion restrictions were in place. All of the model selection procedures also invariably
correctly select the larger models over OP. However, there is indeed evidence that the
correlation coefficient, r, is not properly identified; the average estimate for r is only 0.038
compared to the true value of 0.5. Based on the Wald statistic, in only 2.3% of the cases
would one correctly select the ZIOPC model over the ZIOP variant. Furthermore,
convergence problems were encountered for particular draws of the random variables
within the Monte Carlo experiment. Indeed, Smith (2003) has also suggested that weak
identification can lead to computational problems such as lack of convergence in similar
models.
From an empirical point of view however, given that the zeros are assumed to come

from two different regimes, a model with x � z is not going to be a scenario that an applied
researcher would necessarily entertain.

3.2. Performance under OP

We now consider the case when the true model is, in fact, the usual OP model. In this
case, even though x and b do not feature in the true OP d.g.p., ZIOP and ZIOPC models
were estimated as if they did. We consider several scenarios for the explanatory variables x
and z. Experiment 4 has partly overlapping x and z as in Experiments 1 and 2, with
x ¼ f1; logðUniform½0; 100�Þ; 1fUniform½0;1�40:25gg and z equal to the first two columns of x.
Experiment 5 assumes that x and z have explicit exclusion restrictions and no overlapping
variables, with z ¼ f1; jNð0; 4Þjg and x as before. In Experiment 6, we consider a case of
complete overlap, with x � z ¼ f1; logðUniform½0; 100�Þg. Finally Experiment 7 has x and z

as in Experiment 4 except that x has an additional Nð0; 4Þ variate. Again R ¼ 1; 000 Monte
Carlo replications are considered in all scenarios.
The marginal effect results from these experiments are in Table 4, and summary statistics

and model selection results in Table 5. Convergence problems were encountered with the
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Table 3

Monte Carlo results under ZIOPC (x ¼ z): Experiment 3

Prðy ¼ 0jz; xÞ Prðy ¼ 1jz; xÞ

TRUE OP ZIOP ZIOPC TRUE OP ZIOP ZIOPC

Marginal effects

x1 ¼ z1 ME 0.099 �0.032 0.102 0.102 �0.301 0.005 �0.295 �0.297

RMSE (0.132) (0.021) (0.021) (0.306) (0.022) (0.021)

CP 0.000 0.952 0.959 0.000 0.986 0.999

Prðy ¼ 2jz; xÞ Prðy ¼ 3jz; xÞ

TRUE OP ZIOP ZIOPC TRUE OP ZIOP ZIOPC

x1 ¼ z1 ME 0.079 0.012 0.071 0.073 0.123 0.015 0.123 0.123

RMSE (0.067) (0.019) (0.018) (0.108) (0.012) (0.012)

CP 0.000 1.000 0.997 0.000 1.000 1.000

TRUE OP ZIOP ZIOPC

Coefficients

m1 m1 4.500 0.694 4.865 4.826

RMSE (3.810) (0.720) (0.730)

CP 0.000 0.949 0.986

m2 m2 5.500 1.315 5.955 5.902

RMSE (4.190) (0.780) (0.790)

CP 0.000 0.949 0.986

r r 0.500 0.038

RMSE (0.510)

CP 0.990

OP ZIOP ZIOPC

RMSE_P 0.122 0.019 0.019

(0.002) (0.006) (0.006)

Correct 0.470 0.523 0.523

Time 0.027 0.067 0.344

Wald 0.977 0.023

Vuong 0.00 1.00

VuongðCÞ 0.00 1.00

LR 1.00

LRðCÞ 1.00

Hausman 1.00

HausmanðCÞ 0.94

AIC 0.000 0.976 0.024

BIC 0.000 0.997 0.003

CAIC 0.000 0.998 0.002
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ZIOPC model in these experiments. For this reason, only the ZIOP model was estimated.
For the applied researchers, if convergence problems are encountered with the ZIOPC, it
may suggest that the data is inconsistent with a zero-splitting process.

Results in Table 4 show that when the true d.g.p. is OP, a ZIOP model actually performs
very well. In fact, the average estimated marginal effects from both OP and ZIOP models



ARTICLE IN PRESS

Table 4

Monte Carlo results under OP: Experiments 4–7—marginal effects

Experiment 4 TRUE OP ZIOP TRUE OP ZIOP

Prðy ¼ 0jz; xÞ Prðy ¼ 1jz; xÞ

x1 ¼ z1 ME 0.000 0.000 0.000 �0.373 �0.376 �0.376

CP 0.851 0.856 1.000 1.000

x2 ME 0.000 0.000 0.000 0.000

CP 0.999 0.999

Prðy ¼ 2jz; xÞ Prðy ¼ 3jz; xÞ

x1 ¼ z1 ME 0.216 0.219 0.219 0.157 0.157 0.157

CP 0.893 0.994 1.000 1.000

x2 ME 0.000 0.000 0.000 0.000

CP 0.999 0.999

Experiment 5

Prðy ¼ 0jz; xÞ Prðy ¼ 1jz; xÞ

x1 ME 0.000 0.0001 0.000 �0.0001

CP 0.999 0.999

z1 ME �0.0412 �0.0412 �0.0388 0.0171 0.0171 0.0157

CP 0.936 0.926 1 1

Prðy ¼ 2jz; xÞ Prðy ¼ 3jz; xÞ

x1 ME 0.000 0 0.000 0

CP 1 1

z1 ME 0.0227 0.0227 0.0218 0.0014 0.0015 0.0013

CP 0.94 0.936 0.817 0.804

Experiment 6

Prðy ¼ 0jz; xÞ Prðy ¼ 1jz; xÞ

x ¼ z ME 0.000 0.000 0.000 �0.373 �0.375 �0.375

CP 0.859 0.906 0.999 1.000

Prðy ¼ 2jz; xÞ Prðy ¼ 3jz; xÞ

x ¼ z ME 0.216 0.217 0.218 0.157 0.158 0.157

CP 0.924 0.999 1.000 1.000

Experiment 7

Prðy ¼ 0jz; xÞ Prðy ¼ 1jz; xÞ

x1 ¼ z1 ME 0.000 0.000 0.000 �0.373 �0.374 �0.374

CP 0.869 0.771 1.000 1.000

x2 ME 0.000 0.000 0.000 0.000

CP 0.996 0.996

x3 ME 0.000 0.000 0.000 0.000

CP 0.996 0.996

Prðy ¼ 2jz; xÞ Prðy ¼ 3jz; xÞ

x1 ¼ z1 ME 0.216 0.218 0.218 0.157 0.156 0.156

CP 0.917 0.997 1.000 1.000

x2 ME 0.000 0.000 0.000 0.000

CP 0.996 0.996

x3 ME 0.000 0.000 0.000 0.000

CP 0.996 0.996

M.N. Harris, X. Zhao / Journal of Econometrics 141 (2007) 1073–10991086
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Table 5

Monte Carlo results under OP: Experiments 4–7—summary statisticsa

Experiment 4 Experiment 5 Experiment 6 Experiment 7

OP ZIOP OP ZIOP OP ZIOP OP ZIOP

RMSE_P 0.015 0.018 0.014 0.015 0.014 0.016 0.014 0.019

(0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.006) (0.006)

Correct 0.594 0.594 0.861 0.861 0.592 0.593 0.593 0.593

Vuong 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.03

LR 0.02 0.04 0.01 0.03

Hausman 0.01 0.01 0.01 0.01

AIC 0.791 0.209 0.743 0.257 0.834 0.166 0.724 0.276

BIC 1.000 0.000 0.998 0.002 1.000 0.000 1.000 0.000

CAIC 1.000 0.000 0.999 0.001 1.000 0.000 1.000 0.000

Prðr ¼ 1jxÞ – 1.000 – 0.999 – 1.000 – 1.000

Prðr ¼ 1jxiÞ – 0.993 – 0.998 – 0.994 – 0.993

95% range – (0.965,1) – (0.993,1) – (0.968,1) – (0.965,1)

a95% Range refers to the empirical 95% range of Prðr ¼ 1jxiÞ.
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are almost identical, both being very close to the true ones. Table 5 shows why this is the
case; when the true data are OP, the zero split of the ZIOP in Eq. (2) rules that almost all
observations are from Regime 1 and Prðr ¼ 1jxÞ ! 1 (x0b!1, Fðx0bÞ ! 1Þ. As shown in
Table 5, the average probability of r ¼ 1 evaluated at sample means, Prðr ¼ 1jxÞ, is
between 0.999 and 1 for the four experiments. This probability averaged across all
individuals and all replications, Prðr ¼ 1jxiÞ, is also very close to unity, and the empirical
95% range of this latter probability is between 0.965 and 1 for all four experiments. This is
a very favorable result indicating that even the (misspecified) ZIOP model is estimated
when the true model is OP, the parameter estimates of b are such that the ZIOP reduces to
OP even the two models are not nested in the usual sense.7

In terms of RMSE for the predicted probabilities, OP does slightly better than ZIOP.
Again both models have near identical performance in the percentage of correct
predictions. The LR statistic once more, somewhat surprisingly given its lack of theoretical
justification, appears to work very well, with empirical sizes ranging from 1% to 4% (at
nominal 5% level). Similarly the Hausman statistic is only marginally undersized with
empirical sizes of 1%. The information criteria BIC and CAIC correctly choose the OP
model in 99.8% or more of cases, while AIC does so in more than 72.4% of instances. In
other words, the information criteria and LR and Hausman statistics appear to be able to
choose the correct model when the true data are not from a zero split d.g.p..

On the other hand, the Vuong statistic appears to be unable to choose between the two
non-nested models. Recall that the test statistic is bidirectional. For the bulk of all
experiments the test statistic falls in the ‘‘indeterminate’’ region ðjujo1:96Þ, leading to the
conclusion that neither of the two models is preferred. For all experiments, there is not one
single case where the true OP is chosen (u41:96), and for around 1–3% of the time the
ZIOP is actually preferred. These results are confirmed in the Q–Q plots in Fig. 1, which
7This result was correctly conjectured by two anonymous referees, one of whom also suggested that as N !1

so will bb1.
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Fig. 1. Vuong statistic: theoretical versus empirical quantiles under OP.
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contains plots of empirical quantiles of the Vuong statistic against theoretical ones (of a
standard normal distribution) for the four experiments. For the sample size and parameter
settings in these experiments, the plots are clearly not close to the 45� lines where the
empirical and theoretical quantiles concur. In fact, for three of the four experiments, OP is
unlikely to be chosen as the Vuong statistic seems to stay negative. The empirical 5%
critical values for claiming the ZIOP model for Experiments 4–7 are �1:65, �0:86, �1:29
and �1:84, compared to the theoretical critical value of �1:96. We also note here that the
empirical Vuong statistic in Experiments 1–3, where ZIOP models are the true d.g.p., have
large negative values that are below �5. This is shown in the Q–Q plots for Experiments
1–3 in Fig. 2.
In summary of the Monte Carlo results when the true d.g.p. is ZIOPC/ZIOP, both zero-

inflated models perform well. The Vuong test, LR and Hausman statistics, as well as the
information criteria should all correctly select the ZIOPC/ZIOP models. In choosing
between the ZIOP and ZIOPC models, a standard t-test on the estimated value of r should
be used. When the data has been generated according to an OP process, estimation of a
ZIOP model will still yield accurate estimates of the quantities of interest, with the
probability for Regime 1 tending to unity in the split decision such that ZIOP tends to OP.
Moreover, the information criteria are likely to correctly select the smaller model (with
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Fig. 2. Vuong statistic: theoretical versus empirical quantiles under ZIOP(C).
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BIC and CAIC all of the time and AIC over 70% of the time). Similarly, somewhat
surprisingly, both of the Hausman and LR tests have empirical sizes very close to nominal
ones, with the latter having marginally better performance. There is evidence, however,
that the Vuong statistic is heavily biased towards the more heavily parameterised models. It
chooses the ZIOP models all of the time when they are true, but fails to choose the true OP
model with the bulk of the values falling in the indeterminate range. Of course, as with any
Monte Carlo experiments, all of the above results are conditional on the specific
experimental designs.
4. An application to tobacco consumption

Cigarette smoking has long been acknowledged as a public health issue. Yet a significant
proportion of the population in both developed and developing countries smoke. Large
amounts of public funds are spent worldwide on educational programs and promotional
campaigns to reduce cigarette consumption. Empirical studies are crucial to help identify
the socioeconomic and demographic factors associated with smoking, providing invaluable
information to facilitate well-targeted public health policies.
4.1. The data

The data we use for the model are from the Australian National Drug Strategy
Household Survey (NDSHS, 2001). In this data set, neither the monetary expenditures nor
the physical quantities of tobacco consumed are reported. The information on individuals’
consumption of tobacco is given via a discrete variable measuring the intensity of
consumption. There have been seven surveys conducted through the NDSHS since 1985.
The surveys collect information from individuals aged 14 and over on attitudes and
consumption of several legal and illegal drugs. Measures have been put in place in the
surveys to ensure confidentiality in order to reduce under reporting. In this paper, data
from the three most recent surveys of 1995, 1998 and 2001 are used which involve a total of
over 40,000 respondents. After removal of missing values, a sample of 28,813 individuals is
used for estimation. This data set has been used in several previous studies (Cameron and
Williams, 2001; Williams, 2003; Zhao and Harris, 2004).
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Definitions of all variables used in the study are given in the Appendix. In particular, the
information in the data concerning an individual’s consumption of tobacco is collected
through the question ‘‘How often do you now smoke cigarettes, pipes or other tobacco

products?’’, where the responses take the form of one of the following choices: not at all
ðy ¼ 0Þ; smoking less frequently than daily ðy ¼ 1Þ; smoking daily with less than 20
cigarettes per day ðy ¼ 2Þ; and smoking daily with 20 or more cigarettes per day ðy ¼ 3Þ.
Table 6 presents some summary statistics on the observed smoking intensities. On

average around 76% of individuals identify themselves as current non-smokers. With the
way the survey questions are asked, these self-identified non-smokers will include genuine
non-smokers, recent quitters, infrequent smokers who are not currently smoking, as well as
potential smokers who might smoke when, say, the price falls. It could also be argued that
these observations may include some misreporting respondents who prefer to identify
themselves as non-smokers. The choices of consumption intensities are clearly ordered,
thus presenting a good case for the ZIOP(C) model(s) in order to identify the different
types of zero observations and their potentially different driving factors.
The participation decision of Eq. (1) is likely to be driven by factors relating to

individuals’ attitudes towards smoking and health concerns. Thus, r� is likely to be related
to the individuals’ education levels and other standard socio-demographic variables such
as income, marital status, age, gender and ethnic background that capture socioeconomic
status. There are also studies in the literature suggesting a significant growth in the
smoking prevalence of young females (Boreham and Shaw, 2002). To allow for the recent
rise in participation rates among young females, a dummy variable for young females
(defined as females under 25 years of age) is interacted with a time variable and included in
x in Eq. (1).
In terms of the decision of the levels of consumption conditional on participation,

economists have typically followed a standard consumer demand framework with special
characteristics for addictive goods. Much work has been undertaken applying Becker and
Murphy’s (1988) theory of rational addiction in explaining consumer behaviour in terms of
an individual’s stock of addiction from past smoking (see Becker and Stigler, 1977;
Chaloupka, 1991). Here, for the explanatory variables z in Eq. (3), we include standard
demand-schedule variables such as income and own- and cross-drug prices. The related
drug prices are included as there is evidence that certain drugs, in particular marijuana and
alcohol, act as either compliments or substitutes to tobacco (see, for example, Cameron
Table 6

Summary of consumption frequencies

1995 1998 2001 Combined

N % N % N % N %

Tobacco

Non-smoker 2644 72.4 7047 72.1 20113 78.0 29804 76.0

Weekly or less 120 3.3 504 5.2 937 3.6 1561 4.0

Daily, less than 20/day 600 16.4 1472 15.1 3351 13.0 5423 13.8

Daily, more than 20/day 286 7.8 749 7.7 1376 5.3 2411 6.2

Total 3650 100 9772 100 25777 100 39199 100
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and Williams, 2001; Zhao and Harris, 2004). Data for marijuana prices were obtained
from information provided by the Australian Bureau of Criminal Intelligence (ABCI,
2002) and the Australian Crime Commission (ACC, 2003). They are collected quarterly
and are based on information supplied by covert police units and police informants. The
consumer price indexes for tobacco and alcoholic drinks are obtained from the Australian
Bureau of Statistics (ABS, 2003) for individual states. In addition, standard social
demographic factors are also included in z to capture any heterogeneity in consumption
behaviour among smokers.

Note that we allow the age factor to enter both equations. The participation decision is
allowed to relate non-linearly to age by including age in natural logarithmic form.
However, in the intensity of consumption equation, following a Becker and Murphy (1988)
rational addiction approach, the likelihood that the age-consumption profile will be
‘‘n-shaped’’ is allowed for by including both linear and quadratic terms for age.
4.2. The results

In Table 7 we present some summary statistics from three models: an OP model
conditional on z and treating all observed zeros indifferently; a ZIOP model conditional on
both x and z that allows zero observations to come from two distinct sources; and a
ZIOPC that further allows for correlation across the two error terms. Results for some
ancillary parameters are also presented. As the magnitudes of the estimated coefficients of
b and c are somewhat meaningless, they are not presented here.8

The LR statistics clearly reject the OP model here, as does the Hausman one for the
correlated version (the statistic for the uncorrelated version yielded a negative value).
Furthermore, all of the information criteria, as well as the Vuong test, clearly suggest
superiority of the ZIOP and ZIOPC models over the OP one. With the exception of AIC,
the information criteria marginally favour the uncorrelated variant (ZIOP) to the
correlated one (ZIOPC). Moreover, a Wald test on the estimated value of r also suggests
that the correlation is not statistically significant.

The results are presented as marginal effects on the choice probabilities in Tables 8
and 9. For comparison purposes, we also include the results of a simple probit model to
compare results on participation in Table 8. We only present those for the ZIOPC
model as the ZIOP ones were very similar. Note that for variables appearing in both
x and z, we have combined the two parts of the marginal effects, following Eq. (14).
In Table 8, we present marginal effects on Prðy ¼ 0Þ using a ZIOPC model and compare
them with the results from the probit and OP models. For the ZIOPC model, we also
decompose the overall marginal effect on Prðy ¼ 0Þ into two parts: the effect on non-
participation Prðr ¼ 0Þ and the effect on participation with zero consumption
Prðr ¼ 1; ~y ¼ 0Þ. In Table 9, we present marginal effects on the unconditional probabilities
of all three positive levels of smoking ðy ¼ 1; 2; 3Þ, using an OP model versus the ZIOPC
model.
8Details for the estimated coefficients are in Harris and Zhao (2004). Coefficients for several covariates exhibit

opposite signs in b and c: income has a positive coefficient in c for conditional consumption but a negative one in b

for participation, while the sole income coefficient in either a probit or an OP model is positive. Note also that,

although the price variables are not included in x on a priori grounds, if included they were individually and

jointly insignificant.
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Table 7

Tobacco consumption: some estimated coefficients and summary statistics from three alternative modelsa

OP ZIOP ZIOPC

m1 0.155 ð0:004Þ�� 0.273 ð0:011Þ�� 0.272 ð0:011Þ��

m2 0.920 ð0:011Þ�� 1.387 ð0:031Þ�� 1.383 ð0:031Þ��

r �0.068 (0.222)

‘ðhÞ �21,995 �21,628 �21,626

AIC 44,012 43,292 43,291

LR versus OP 734�� 738��

Hausman versus OP �689 1,259��

BIC 44,206 43,635 43,643

CAIC 44,227 43,672 43,681

Vuong: versus OP �13.830 �13.890

Time 8.1 25.9 224.8

aStandard errors are in parentheses, and (��) and (�) indicate statistical significance at 5% and 10% levels,

respectively. Preferred model with regard to each information criteria is indicated with bold.
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The marginal effects in Tables 8 and 9 highlight some interesting differences from
alternative models for some explanatory factors, such as Ln(Income), Pre-School, School,
Young Female and Study. A key example is the effect of income. This variable clearly acts
as a social class proxy in the participation decision and, accordingly, one would expect a

priori it to be positively associated with non-participation. Results based on the ZIOPC
model suggest that a 10% increase in personal income results in a 0.0027 rise in the
probability of non-participation, but a 0.0017 fall in the probability of participation with
zero consumption. This latter effect indicates that tobacco is a normal good for
participants. Overall, there is a 0.001 net positive effect on the probability of observing
zero consumption for a 10% increase in personal income. However, basing policy advice
on the probit (or OP) model results, one would conclude that income is positively related
to participation as well as higher consumption.
Another example is the marginal effect of Study. Using simple probit and OP models,

one would conclude that people who mainly study are more likely to be non-smokers
(by 0.098 and 0.128, respectively, Table 8). With a single latent equation, we assume, in the
case of OP, that there is a homogenous ‘study’ effect that affects an individual
moving from non-smokers to smokers of higher levels (y ¼ 0; 1; 2; 3Þ in the same direction.
However, when a ZIOPC model is used, we assume that the observed smoking
categories are the result of two distinct decisions of ‘participation’ and ‘levels of
consumption conditional on participation’, on which Study can have opposite effects.
Indeed, as shown in Table 8, the ZIOPC estimates that Study has a positive effect on
participation decision but a negative effect on levels of consumption, leading to a
statistically insignificant total effect of observing a zero ðy ¼ 0Þ outcome as the opposing
effects cancel each other out. This contrasts the positive effects on non-participation by
both the probit and OP models. In addition, the resulting marginal effects on the
unconditional probabilities of levels of smoking ðPrðy ¼ jÞ; j ¼ 1; 2; 3Þ in ZIOPC is also
the result of two sources: MEs on participation, Prðr ¼ 1Þ, and MEs on levels of smoking
conditional on participation, Prðy ¼ jjr ¼ 1Þ. For example, the �0:032 ME of Study

on heavy smoking, Prðy ¼ 3Þ, in Table 9 is the combined result of opposing effects
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Table 8

Tobacco consumption: marginal effect for non-participation and zero consumption

ZIOPC

Probit OP Non-participation Zero consumption Full

Prðy ¼ 0Þ Prðy ¼ 0Þ Prðr ¼ 0Þ Prðr ¼ 1; ey ¼ 0Þ Prðy ¼ 0Þ

Young female 0.021 – �0.059 0.023 �0.036

(0.004)** – (0.025)** (0.010)** (0.015)**

Actual age 0.006 0.004 0.015 �0.009 0.006

(0.000)** (0.000)** (0.001)** (0.001)** (0.000)**

Ln (Income) �0.014 �0.003 0.027 �0.017 0.010

(0.004)** (0.004) (0.009)** (0.006)** (0.005)**

Male �1 �0.018 �0.047 �0.095 0.023 �0.072

(0.006)** (0.005)** (0.013)** (0.009)** (0.007)**

Married �1 0.082 0.099 0.160 �0.039 0.121

(0.006)** (0.005)** (0.013)** (0.010)** (0.007)**

Pre-school �1 �0.012 0.009 0.054 �0.019 0.035

(0.008) (0.007) (0.019)** (0.014) (0.009)**

Capital �1 0.007 0.012 �0.008 0.020 0.012

(0.006) (0.005)** (0.012) (0.010)** (0.007)*

Work �1 �0.002 0.053 �0.008 0.049 0.041

(0.008) (0.008)** (0.017) (0.014)** (0.009)**

Unemployed �1 �0.129 �0.044 �0.061 0.004 �0.057

(0.018)** (0.014)** (0.032)* (0.022) (0.018)**

Study �1 0.098 0.128 �0.194 0.182 �0.012

(0.010)** (0.012)** (0.061)** (0.033)** (0.032)

English �1 �0.046 �0.057 �0.063 �0.004 �0.067

(0.011)** (0.012)** (0.028)** (0.021) (0.014)**

Degree �1 0.150 0.184 0.080 0.128 0.209

(0.006)** (0.008)** (0.022)** (0.019)** (0.010)**

Diploma �1 0.038 0.048 0.027 0.036 0.063

(0.007)** (0.007)** (0.014)* (0.012)** (0.008)**

Year 12 �1 0.056 0.069 0.020 0.060 0.079

(0.007)** (0.007)** (0.018) (0.014)** (0.010)**

School �1 0.174 0.170 �0.002 0.093 0.091

(0.009)** (0.019)** (0.100) (0.046)** (0.058)

LnðPAÞ – 0.322 – 0.300 0.300

– (0.078)** – (0.071)** (0.071)**

LnðPMÞ – 0.002 – �0.004 �0.004

– (0.012) – (0.010) (0.010)

LnðPTÞ – 0.156 – 0.145 0.145

– (0.020)** – (0.019)** (0.019)**
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of Study on the two decisions. This contrasts the ME of �0:043 from an OP with only one
source of impact.

4.3. Model evaluation

In Fig. 3 we present the observed sample proportions, average predicted probabilities
and the probabilities evaluated at average covariates using a ZIOPC model for the four
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Table 9

Tobacco consumption: marginal effects for non-zero consumption levels

OP ZIOPC OP ZIOPC OP ZIOPC

Prðy ¼ 1Þ Prðy ¼ 1Þ Prðy ¼ 2Þ Prðy ¼ 2Þ Prðy ¼ 3Þ Prðy ¼ 3Þ

Young female – 0.006 – 0.021 – 0.008

– (0.003)** – (0.009)** – (0.003)**

Actual age �0.001 �0.002 �0.002 �0.004 �0.001 �0.000

(0.000)** (0.000)** (0.000)** (0.000)** (0.000)** (0.000)**

LnðincomeÞ 0.000 �0.003 0.002 �0.007 0.001 0.000

(0.000) (0.001)** (0.002) (0.003)** (0.001) (0.002)

Male �1 0.006 0.010 0.026 0.042 0.016 0.021

(0.001)** (0.001)** (0.003)** (0.004)** (0.002)** (0.005)**

Married �1 �0.012 �0.016 �0.054 �0.070 �0.033 �0.035

(0.001)** (0.002)** (0.003)** (0.005)** (0.002)** (0.005)**

Pre-school �1 �0.001 �0.006 �0.005 �0.021 �0.003 �0.009

(0.001) (0.002)** (0.004) (0.006)** (0.002) (0.004)**

Capital �1 �0.001 0.001 �0.007 �0.005 �0.004 �0.008

(0.001)** (0.001) (0.003)** (0.004) (0.002)** (0.003)**

Work �1 �0.006 0.003 �0.029 �0.018 �0.018 �0.024

(0.001)** (0.002) (0.004)** (0.009)** (0.003)** (0.007)**

Unemployed �1 0.005 0.006 0.024 0.032 0.015 0.020

(0.002)** (0.004) (0.008)** (0.011)** (0.005)** (0.008)**

Study �1 �0.015 0.025 �0.070 0.021 �0.043 �0.032

(0.002)** (0.007)** (0.007)** (0.023) (0.004)** (0.012)**

English �1 0.007 0.006 0.031 0.038 0.019 0.025

(0.001)** (0.003)* (0.006)** (0.009)** (0.004)** (0.007)**

Degree �1 �0.022 �0.003 �0.101 �0.107 �0.061 �0.099

(0.001)** (0.002) (0.005)** (0.006)* * (0.003)** (0.005)**

Diploma �1 �0.006 �0.001 �0.026 �0.032 �0.016 �0.030

(0.001)** (0.002) (0.004)** (0.005)** (0.002)** (0.004)**

Year 12 �1 �0.008 0.000 �0.038 �0.040 �0.023 �0.040

(0.001)** (0.002) (0.004)** (0.006)** (0.002)** (0.004)**

School �1 �0.020 0.004 �0.093 �0.044 �0.057 �0.051

(0.002)** (0.011) (0.011)** (0.035) (0.007)** (0.013)**

LnðPAÞ �0.038 0.011 �0.177 �0.144 �0.107 �0.166

(0.009)** (0.004)** (0.043)** (0.035)** (0.026)** (0.039)**

LnðPMÞ �0.000 �0.000 �0.001 0.002 �0.001 0.002

(0.001) (0.000) (0.006) (0.005) (0.004) (0.006)

LnðPTÞ �0.018 0.005 �0.085 �0.070 �0.052 �0.081

(0.002)** (0.002)** (0.011)** (0.009)** (0.007)** (0.010)**
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smoking categories, which we denote zero, low, moderate and high. For Prðy ¼ 0Þ, we also
present the probability of zeros arising from the regime of non-participation ðr ¼ 0Þ as the
‘‘selection component’’. As can be seen, the model fits the data well in terms of mimicking
these sample proportions. Moreover, it is clear that the bulk of the probability mass of
Prðy ¼ 0Þ comes from non-participants with r ¼ 0.
In Fig. 4 the overall age-smoking profile is plotted. The expected n-shaped profile is

clearly evident for the smokers, and most pronounced for moderate and high levels of
consumption. In terms of the probability of zero consumption, this finds a nadir at around
the mid-late 20’s, with the probability reaching nearly 0.9 at age 66.
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Fig. 3. Observed and predicted probabilities.
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As previously mentioned, one of the advantages of a ZIOPC is its ability to disentangle
the total effect of a covariate on Prðy ¼ 0Þ into those effects on the probabilities of the two
types of zeros: Prðr ¼ 0Þ and Prðey ¼ 0; r ¼ 1Þ. This is illustrated in Fig. 5 for the effect of
age. At younger ages, Prðy ¼ 0Þ is dominated by potential consumers. However, as age
increases and participation rates decline, the bulk of Prðy ¼ 0Þ comes from genuine non-
participation.
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While the results in Table 7 clearly suggest preference of the ZIOP(C) model(s) over the
OP model, as a specification test, we also experimented with the more flexible models of
multinomial logit (MNL) and multinomial probit (MNP). Without imposing restrictions
in the correlation matrix, we encountered convergence problems with MNP using standard
econometric software. The MNL model was found inferior on the basis of both BIC and
CAIC. The log-likelihood values of the ZIOPC and MNL models were very close (�21; 626
and �21; 601, respectively), while the MNL has 20 additional parameters. In addition,
Hausman tests clearly rejected the embodied independence of irrelevant alternatives

property of the MNL model, and the smoking levels data here are quite clearly ordered in
nature.

5. Conclusions

We propose a model for ordered discrete data that allows for the observed zero
observations to be generated by two different behavioural regimes. Following double-
hurdle and zero-inflated models, we extend the OP model to a zero-inflated OP model
using a system of two latent equations with potentially different covariates. We also allow
for the likely correlation between the two latent equations. The Monte Carlo experiments
suggest that the model performs well in finite samples. Although not strictly valid, both the
LR and Hausman statistics appear to provide useful general specification tests against the
simpler OP model. The former may be preferred in terms of ease of computation and better
finite sample performance. On the other hand, the Vuong test does not appear to have
favourable small sample properties and tends to favour the ZIOP models, whilst
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information criteria seem to have good empirical properties with regard to selecting the
correct model. If the d.g.p. is not zero split, the LR and Hausman statistics and the
suggested model selection procedures based on information criteria should all correctly
pick the OP model. However, even in this case, estimation of a ZIOP model will still
provide accurate results in terms of the marginal effects, as the probability for Regime 1
tends to unity in the split decision such that ZIOP probabilities tend to OP ones. However,
if the d.g.p. is zero split, the evidence is that the ZIOP models will be correctly selected if
any of the LR and Hausman statistics, Vuong test or information criteria are used. With
regard to differentiating between the ZIOP and ZIOPC, a Wald test of r ¼ 0 would be
preferred to the information based model selection procedures.

The models are applied to discrete data of tobacco consumption from a nationally
representative Australian survey. The empirical application demonstrates the advantages
of the ZIOP(C) model in separating the different behavioural schemes for participants and
non-participants. In particular, we allow for the split of the observed non-users (‘‘zeros’’)
into two groups: those of non-participants who choose not to smoke due to health
concerns or other non-economic factors, and those zero consumption potential users who
may be the result of a demand-schedule corner solution and are therefore responsive to
economic factors such as prices and income. The example shows that the use of a
conventional OP model would confuse the effects of some important explanatory variables
that have opposing impacts on the two schemes.

The ZIOP(C) model has important advantages over the conventional OP model. It can
be used to estimate the proportion of zeros coming from each regime, and how this split
changes with observed characteristics. The proposed model allows for the identification of
variables that are important in each regime. This is potentially very important for policy
analysis.
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Appendix A. Definition of variables
y
 Levels of tobacco consumption; y ¼ 0 if not current smoker, y ¼ 1 if
smoking weekly or less, y ¼ 2 if smoking daily with less than 20
cigarettes per day, and y ¼ 3 if smoking daily with 20 or more cigarettes
per day.
Ln(Age)
 Logarithm of actual age.

Age
 Actual age divided by 10.

Age square
 Age squared and divided by 10.

Male
 1 for male and 0 for female.

Married
 1 if married or de facto and 0 otherwise.
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Pre-school
 1 if the respondent has pre-school aged child/children and 0 otherwise.

Capital
 1 if the respondent resides in a capital city, and 0 otherwise.

Work
 1 if mainly employed and 0 otherwise.

Unemployed
 1 if unemployed and 0 otherwise.

Study
 1 if mainly study and 0 otherwise.

Other
 1 if retired, home duty, or volunteer work and 0 otherwise. This variable

is used as the base of comparison for work status dummies and is
dropped in the estimation.
English
 1 if English is the main language spoken at home for the respondent and
0 otherwise.
Degree
 1 if the highest qualification is a tertiary degree and 0 otherwise.

Diploma
 1 if the highest qualification is a non-tertiary diploma or trade certificate,

and 0 otherwise.

Year 12
 1 if the highest qualification is Year 12 and 0 otherwise.

School
 1 if still studying in school and 0 otherwise.

Noqual
 1 if the highest qualification is below Year 12 and 0 otherwise. This

variable is used as the base of comparison for education dummies and is
dropped in the estimation.
LnðPTÞ
 Logarithm of real price index for tobacco, divided by 10.

LnðPAÞ
 Logarithm of real price index for alcoholic drinks, divided by 10.

LnðPMÞ
 Logarithm of real price for marijuana measured in dollars per ounce,

divided by 10.

Ln(Income)
 Logarithm of real personal annual income before tax measured in

thousands of Australian dollars, divided by 10.

Young female
 A binary dummy for female aged 25 years or younger, interacted with an

annual time trend t ¼ 1; 2; 3.
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